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Abstract

The first example of the application of reorientational eigenmode dynamics (RED) to RNA is shown here
for the small and floppy Iron Responsive Element (IRE) RNA hairpin. Order parameters calculated for
bases and riboses from a 12 ns molecular dynamics trajectory are compared to experimentally determined
order parameters from 13C-1H NMR relaxation experiments, and shown to be in qualitative agreement.
Given the small size of the IRE hairpin and its very flexible loop, isotropic RED (iRED) was also used to
analyze the trajectory in order to describe its dynamic motions. iRED analysis shows that the global and
internal dynamics of the IRE are not rigorously separable, which will result in inaccurate experimental
order parameters. In addition, the iRED analysis described the many correlated motions that comprise the
dynamics of the IRE RNA. The combined use of NMR relaxation, RED, and iRED provide a uniquely
detailed description of IRE RNA dynamics.

Introduction

Short RNA sequences that participate in inter-
molecular interactions are often displayed as single
stranded structures in order to offer the maximum
number of physical contacts with the biological
partner. Structural characterization of small
RNAs is best done using solution NMR (e.g. TAR
(Puglisi et al., 1992), the GNRA tetraloop (Heus
et al., 1991), and the tetraloop receptor (Butcher
et al., 1997)), but some of these RNAs appear to
be quite flexible, such as the U6 intramolecular
stem-loop (Reiter et al., 2004); the IRE loop
(Laing and Hall, 1996); and the active site of ri-
bozymes (Hoogstraten et al., 2000). Thus, equally
important is an appreciation of RNA dynamic

motion, which can be addressed in part by NMR
relaxation methods (King et al., 1995; Hall and
Tang, 1998; Dayie et al., 2002). To obtain a
physical description of the rapid (ps-ns) motions
present in an RNA molecule, the most compre-
hensive description is potentially available from
molecular dynamics simulations (Miller and
Kollman, 1997; Cheng et al., 2004; Hall and
Williams, 2004), with the caveats that motions are
sufficiently sampled and accurately portrayed.

The Iron Responsive Element (IRE) RNA
hairpin is examined here by a combination of
NMR relaxation experiments and molecular
dynamics simulations. It is an example of a small
and flexible RNA hairpin loop that is the binding
site for a protein. One copy of the IRE is present in
the 5¢-untranslated region of the ferritin mRNA,
and five copies are found in the 3¢-untranslated
region of the transferrin mRNA; in both sites, it is
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bound by the Iron Responsive Element-Binding
Protein (IRE-BP). The IRE loop sequence
C6A7G8U9G10C11, sits on an AU loop closing
base pair, which is conserved in the ferritin mRNA
(Casey et al., 1988) (Structure shown in Figure 1;
numbering refers to the hairpin construct used in
these experiments). NMR structures of the IRE
hairpin loop showed a base pair formed between
Cytidine 6 and Guanosine 10, which accounts for
the higher than predicted melting temperature of
the IRE hairpin (Laing and Hall, 1996; Addess
et al., 1997). As a consequence of this base pair
interaction, Cytidine 11 is extruded from the loop.
Similarly, the Uridine 9 base was not located
within the loop structure, and structures generated
from the NMR data placed it in solution at the
turn of the loop. On the 5¢ side of the loop,
Adenosine 7 was stacked over Cytosine 6, but the
Guanosine 8 base did not appear to be proximal to
any element of the loop. The ribose of A7 is best
described by an alternating C2¢-endo/C3¢-endo
pucker (although the IRE structure of Addess
et al. (1997) shows it to be C3¢-endo). Addess et al.
(1997) measured the 3JH10;H20 of the loop riboses,
and concluded that G8 and U9 were C2¢-endo,
while G10 and C11 riboses interconvert between
the two puckers. The repuckering of the sugars
and the absence of physical restraints for four of
six bases in the loop has led to the description of
this structure as ‘‘floppy.’’

The IRE-BP recognizes the short IRE RNA
loop sequence, 5¢CAGUGN, where N is C, U, or
A, in addition to a conserved bulge in the IRE
hairpin stem (Barton et al., 1990; Leibold et al.,
1990; Bettany et al., 1992; Jaffrey et al., 1993;
Kikinis et al., 1995). The mechanism of RNA:pro-

tein interaction is not known; the 90 kDa phyloge-
netically conserved metazoan IRE-BP is presumed
to be structurally homologous to the mitochondrial
aconitase (Robbins et al., 1989), and the binding site
for RNA was modeled in the cleft of the two do-
mains (Basilion et al., 1994; Hirling et al., 1994;
Kaldy et al., 1999). There are no biophysical data
describing this RNA:protein interaction, but based
on the floppy loop structure of the IRE in solution,
we postulate that loop flexibility is an important
feature of sequence-specific recognition.

The lack of NMR constraints to describe the
loop structure suggested that several bases in the
loop were mobile. To measure the dynamic mo-
tions of the bases, a 13C NMR relaxation study
was carried out on the IRE hairpin (Hall and
Tang, 1998), observing only the purine bases.
Results showed that at 20 �C, where the NMR
structure was solved, all purines in the loop ap-
peared to experience the same amplitude of dy-
namic motion. The implication is that although
the G8 base could not be located within a struc-
tured loop, it did not appear to be more flexible
than the G10 base in its C6:G10 base pair. How-
ever, at 37 �C, approximately 20� below the melt-
ing temperature in this buffer (30 mM NaCl,
10 mM sodium phosphate, pH 6), 13C NMR data
showed a significant increase in the motions
experienced by all three purine bases in the loop,
indicating that the entire loop had become more
mobile on the ps-ns timescale (Hall and Tang,
1998).

Subsequent fluorescence studies of IRE loops
used 2-aminopurine in place of either A7 or G8
(Hall and Williams, 2004). Estimates of the time-
scale of motions of these two bases were made on
the basis of time-resolved fluorescence. 2AP at the
A7 position appeared to be mostly stacked on its
C6:G10 neighbor, with only occasional excursions
away (on the ns timescale); 2AP at position G8
was best described as undergoing a significant
proportion of its dynamic motions on the ns
timescale. A physical description of the motions in
the IRE was provided by several stochastic
dynamics simulations (Hall and Williams, 2004),
which showed that G8 made large amplitude
excursions away from the other nucleotides in the
loop, while its neighboring A7 was far more
restricted.

The dynamic properties of short RNA se-
quences are a necessary component of their bio-

Figure 1. A structure of the IRE RNA consistent with NMR
structural data, in which the base of Guanosine 8 is unstacked,
and those of Uridine 9 and Cytosine 11 are solvent-exposed.
Stereo figure is generated by MOLMOL (Kraulis, 1991).
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logical function, since nucleotides must be acces-
sible to an incoming protein in order to provide
sequence-specific recognition and high affinity
binding. While RNA structure can be solved
using NMR, descriptions of the RNA dynamics
using NMR are usually incomplete, given the
span of timescales present, the number of appli-
cable NMR experiments, and the paucity of iso-
lated NMR relaxation-active reporters. Analysis
of NMR relaxation data typically relies on the
Lipari–Szabo model-free formalism (Lipari and
Szabo, 1982a, b), which in its basic form pro-
duces a correlation time for global tumbling (sc)
as well as an order parameter (S2) representing
the amplitude of motion and a local correlation
time (se) associated with that motion for each
spin pair (typically 15NA1H or 13CA1H).

One necessary condition for application of
Lipari–Szabo formalism is that the global reori-
entation of the system be separable from the
internal motion. To a good approximation, this
condition suggests that the internal motion should
occur on a timescale at least an order of magnitude
faster than global tumbling if the Lipari–Szabo
model is to be applied with confidence. The IRE
RNA is small enough that it tumbles with a
rotational correlation time of 3.6 ns at 20 �C, and
2.4 ns at 37 �C (Hall and Tang, 1998). Unfortu-
nately, both NMR relaxation data and indepen-
dently measured fluorescence data indicate that
several bases which protrude from the core struc-
ture are moving on timescales similar to the overall
tumbling time of the IRE. These conditions could
indicate correlation between internal and global
motion and thus invalidation of the separability
assumption, rendering calculated Lipari–Szabo
order parameters inaccurate. The most likely out-
come in this case would be an overestimation of
the order parameter for most sites (Vugmeyster
et al., 2003).

NMR relaxation measurements are not the
only experiments capable of generating order
parameters and other dynamic information. The
recent development of the Reorientational Eigen-
mode Dynamics (RED) formalism allows for facile
calculation of order parameters and correlation
functions for internal motions from molecular
dynamics trajectories, and allows for their com-
parison with results obtained from NMR experi-
ments (Prompers and Bruschweiler, 2001). In
addition, RED calculations extend the description

of NMR relaxation active local motions by
unmasking correlations between them. Assuming
that the molecular dynamics trajectory is of suffi-
cient length to sample motions on timescales
comparable to those accessed by standard NMR
dynamics (ps-ns), then RED analysis can provide a
detailed description of dynamic motion in a mol-
ecule.

Analogous to Cartesian principle component
analysis (Kitao et al., 1991) or essential dynamics
(Amadei et al., 1993), the RED formalism is ap-
plied by constructing a covariance matrix from an
MD trajectory with diagonal elements describing
positional fluctuations at a subset of sites inter-
esting to the investigator, and off-diagonals
describing the covariance between those sites.
Unlike the other commonly applied covariance
methods, which tend to focus on the Cartesian
position of sites within the molecule, RED analysis
tracks the (NMR relaxation active) reorientational
fluctuations of internuclear bond vectors, typically
corresponding to those which the investigator can
study experimentally by NMR methods. The
diagonal elements of the RED covariance matrix
are directly proportional to the Lipari–Szabo or-
der parameter for each site and thus the link be-
tween MD and NMR experiments is established.

The information encoded in the RED covari-
ance matrix is much richer than the order param-
eters, however, in that it also describes the
potential correlations between the reorientations
of each site. These correlations are most readily
visualized through calculation of the eigenvectors
of the matrix. These eigenvectors can be repre-
sented such that the fractional contribution to the
order parameter (dS2) of the motion described by
the vector is displayed for each spin pair. For
example, a single site in a molecule (corresponding
to a 13C-1H NMR vector) may have motions that
are uncorrelated to any other site; such isolated
motion would be identified by an eigenvector that
contained a contribution from this site and no
other, neither would this site contribute any
amplitude to other eigenvectors. In contrast, it is
probable that there are sites that experience mo-
tion predominantly or exclusively in concert with
other sites (correlated motion). In that case, the
likely outcome is that several eigenvectors will
contain simultaneous contributions from this site
and others, although the amplitude of the contri-
bution will vary. Presumably, small floppy RNA
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molecules will exhibit both uncorrelated and cor-
related motions.

The RED formalism is best applied to molec-
ular systems in which the correlation function
describing global motion is separable from that of
local motion, analogous to the Lipari–Szabo
formalism for analysis of NMR relaxation data.
Recently, RED was extended such that this sepa-
ration need not be assumed a priori, leading to the
formalism termed isotropic RED, or iRED
(Prompers and Brüschweiler, 2002). In addition to
eliminating the need to assume separability, iRED
offers the potential to study the nature of a mol-
ecule’s global reorientation by MD, a property not
accessible in the original formulation of RED,
while still providing a description of NMR spin
relaxation active motions. Small floppy RNA
molecules, specifically the IRE RNA hairpin, are
excellent candidates for iRED analysis, since MD
trajectories can be run for tens of nanoseconds,
providing information on motions on the ps to low
ns timescale, and because it is likely that global
and internal motion are not rigorously separable
for this class of molecule.

To disentangle the dynamics of the small IRE
molecule, we have used RED and iRED to analyze
a 12 ns MD trajectory of the IRE, and then
compared the RED order parameters predicted
from the trajectory to those obtained from NMR.
In addition, the correlated motions of bases and
riboses are clearly revealed by the iRED protocol.
This powerful formalism gives a unique and
comprehensive description of the dynamic motion
of this small floppy RNA.

Materials and methods

RNA samples

IRE molecules were synthesized in vitro using SP6
RNA polymerase, incorporating [13C]-ATP, [13C]-
GTP, [13C10 ]-ATP, [13C10 ]-GTP or [13C10 ]-CTP
(Laing and Hall, 1996). The labeled nucleotides
were prepared as described (Nikonowicz et al.,
1992). Unfortunately, our yield of [13C10 ]-UTP was
insufficient for synthesis. RNAs were purified by
HPLC on a Dionex column and desalted. RNA
samples were prepared in 30 mM NaCl, 10 mM
sodium phosphate, pH 6, at RNA concentrations
from 0.8 to 1.3 mM, and lyophilized three times

for exchange into D2O. NMR experiments used a
Nalorac microprobe on the 500 and 600 MHz
spectrometers; sample volumes were typically
160 ll.

NMR relaxation

Data were collected at 20 �C, where the structure
was solved, and at 37 �C, the physiological tem-
perature that is approximately 20� below the
melting temperature in this buffer. 13C NMR
relaxation measurements of the IRE RNA re-
quired five samples, each one containing a single
selectively labeled RNA: 13C10-Adenosine, 13C10-
Guanosine, 13C-10–Cytosine, u-13C-adenosine and
u-13C-Guanosine RNAs. The chemical shift
overlap of the 13C10 ribose carbons and protons
and the purine C8 carbons precluded the use of a
single sample. Those samples where the purine
nucleotides were uniformly 13C-labeled were used
only for base relaxation experiments, since their
1H8-

13C8 and 1H2-
13C2 systems are isolated spin

pairs, but their ribose carbons are not.
NMR T1, T1q and NOE experiments were

adapted from those of Yamazaki et al. (1994) for use
with RNA (Hall and Tang, 1998). T1 delays were 5,
35, 85, 125, 165, 205, 245, 285, 325, 365, 405, 445,
485, 525, 565, and 605 ms; T1q delays were 4, 8, 12,
16...to 72 ms. Relaxation dispersion experiments
used fields from 1 to 6 kHz. One result of the use of
separate samples for the T1q experiments was that
the carrier could be placed effectively on-resonance
to the 13C frequencies. T1q spin-lock fields centered
on C2 (�155 ppm) carbons might also contain aro-
matic C4 (�148 ppm) or C6 carbons (�158 ppm),
while fields centered on the C8 (�140 ppm) carbons
could contain the C4 carbons. Although these aro-
matic carbons are passively coupled to the carbons
of interest, they could constitute a relaxation path-
way, and so introduce an error into the determina-
tion of T2. However, this dipole:dipole relaxation
will be a fraction of the dominant dipole:dipole
relaxation through the attached protons of C2 and
C8 (e.g. the distance between C8 and its attached
proton is 1.1 Å, while the distance between C8 and
its nearest carbon (C4) is 2.19 Å; given the 1/r6

dependence of dipole:dipole interactions, there is a
62-fold difference in efficiency between the two
pathways, far below our experimental uncertainty).
Thus we consider the 13C2-

1H and 13C8-
1H spin
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systems as effectively isolated for these measure-
ments.

Relaxation data were acquired at 500 MHz,
and fit using the Lipari–Szabo formalism (Hall
and Tang, 1998). In our previous paper (Hall and
Tang, 1998), a chemical shift anisotropy (CSA) of
Dr=189 ppm was used for all purine carbons;
now, based on density functional calculations,
Dr=120 ppm for C8 of adenosine and guanosine
(Fiala et al., 2000) and for the adenosine C2,
Dr=143 ppm (slightly lower than the value of
152 ppm reported in Fiala et al., 2004). The CSA
value for ribose C10 nuclei was 25 ppm (lower than
the value of Dr � 40 ppm (Fiala et al., 2000)).

To select the order parameter for each site, the
data were fit with the selected sc and examined
with respect to the residuals for each motional
model. Errors in the calculated order parameters
from experimental data come from at least two
assumptions: we have not corrected for the angle
between the C–H bond vector and r33 of the CSA
tensor (Fiala et al., 2000); and, we have assumed a
constant value of CSA for all purine carbons. An
estimate of the error from the first approximation
can be made for the C8 carbons (where the effects
are likely to be the greatest), where here
CSA = 120 ppm, rCH=1.09 Å, and the angle
between the C–H bond and r33 is 20 degrees
(Sitkoff and Case, 1998; Fiala et al., 2000). We
calculate that assuming an angle of zero degrees
introduces an error of <1% in R1 and R2, and an
error in S2 of 0.01; these errors are less than those
from the experiment, and so we consider them to
be negligible. By comparison, changes as small as
0.02 Å in the value of the effective bond length
typically cause about a 10% change in R1 and R2.

Use of a constant value of the CSA for the
purine bases ignores any site-specific variation that
arises through local geometry and motions, par-
ticularly those that contribute to J(0). In the ab-
sence of a rigorous experimental investigation of
base CSA tensor variation as a function of posi-
tion within RNA, the error introduced by neglect
of site-specific variation cannot be estimated with
accuracy or precision. To our knowledge, investi-
gation into the variability of these tensors by solid
state or solution NMR methods has not been re-
ported (see Stueber and Grant (2002) for com-
ments on the sensitivity of the tensor to
electrostatic crystal potentials). Although it is dif-
ficult to extrapolate from 15N to 13C CSA tensor

properties with certainty, investigation of site
variation in amide 15N CSA tensors for the protein
RNase H led to the conclusion that as relaxation
experiments are now measured, the precision of
the data does not warrant correction of CSA for
variation at 11.7 T (Kroenke et al., 1999). Given
that CSA is only a minor contributor to the overall
13C spin relaxation rate at 11.7 T for the nuclei
investigated in this study, even large effects due to
variation are likely to produce negligibly minor
effects in the experimentally determined relaxation
rates and derived order parameters for the IRE as
well.

To calculate the overall correlation time of the
RNAs, the new relaxation data for the riboses
were included in global calculations of sc. As
previously, an array of sc values was used as input
for a minimization in parameter space using the
Lipari–Szabo formalism. For each value of sc, T1,
T1q, and NOE data from each residue were fit to
each model of motion (S2 only; S2 and se; S

2 and
Rex; S

2, se, and Rex; or S
2
f, S

2
s , and sf for each site

(Mandel et al. 1995). The residuals of the target
function v2 were calculated for each residue using
each model,

v2 ¼ðTexp
1 � Tc

1Þ
2=r2

1 þ ðT
exp
2 � Tc

2Þ
2=r2

2

þ ðNOEexp �NOEcÞ2=r2
3

where exp is experimental value, c is calculated,
and the standard deviations ri come from experi-
mental data. The best correlation time for the
molecule was that value that produced the smallest
sum of all residuals.To select the order parameter
for each site, the data were fit with the selected sc
and examined with respect to the residual, and the
values calculated for se, Rex, S

2
f , S

2
s , and sf. For

ribose 13C10 sites, the simplest model was always the
best; for the bases, other models were more
appropriate (Hall and Tang, 1998). However, be-
cause application of the Lipari–Szabo formalism
for this RNA molecule was shown to be only
qualitatively correct, only the experimental order
parameters are reported here.

Molecular dynamics simulations

Explicit solvent molecular dynamics (MD) simu-
lations were performed using the AMBER7 soft-
ware (Pearlman et al., 1995; Case et al., 2002) with
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the AMBER94 force field (Cornell et al., 1995;
Ponder and Case, 2003). The IRE starting con-
formation was taken from the solved NMR
structures (Laing and Hall, 1996) in a manner
consistent with earlier implicit solvent simulations
by Hall and Williams (2004).

The IRE was initially solvated with 9050 TIP3P
water molecules (Jorgensen et al., 1983) in a cubic
box with sides of 67 Å length. This large simula-
tion box served two purposes: to minimize inter-
actions between periodic images of the RNA and
to allow for reasonable numbers of monovalent
and divalent counterions. Na+, Cl), and Mg++

counterions were added to the simulation with the
ISIM grand canonical Monte Carlo (GCMC)
software (Vitalis et al., 2004) using excess chemical
potentials calibrated to give bulk (i.e., in the ab-
sence of RNA) concentrations of 50 mM NaCl
and 1 mM MgCl2. The resulting GCMC simula-
tions placed 45 Na+, 32 Cl), and 1 Mg++ ions in
the (67 Å) (Butcher et al., 1997) domain to give an
electroneutral system with effective local concen-
trations of 250 mM Na+, 180 mM Cl), and 5 mM
Mg++.

The initial RNA structure was minimized via
steepest descent minimization to relax the initial
structure. The water was then heated to 50 K
through 10 ps of canonical (NVT) MD with 2 fs
time steps and SHAKE constraints (Ryckaert
et al., 1977) on hydrogen-heavy atom bonds. Next,
the entire system was slowly heated through a
series of isothermal-isobaric (NPT) simulations at
50, 100, 150, 200, 250, and 300 K. Each simulation
was performed for 10 ps with 2 fs time steps,
SHAKE constraints on hydrogen-heavy atom
bonds, and particle mesh Ewald (PME) electro-
statics (Darden, 2001) with a 10 Å direct space
cutoff. Upon completion of this heating process,
an additional 11.93 ns of NPT MD (Berendsen
et al. 1984) was performed to generate a total
trajectory of 12 ns duration.

Order parameters from RED analysis

The reorientational eigenmode dynamics formal-
ism and its isotropic extension have been described
in detail elsewhere (Prompers and Brüschweiler,
2001, 2002). All calculations were performed using
in house programs written in either perl or C; our
protocol for implementation of RED has been
published elsewhere and required only superficial

modification to adapt to RNA (Showalter and
Hall, 2002). The polar coordinates representing 36
spin interactions were calculated every 2 ps along
the final 10 ns of the 12 ns trajectory. These sites
were the 16 backbone C1¢–H1¢, the purine C8-H8,
Adenine C2-H2, and the pyrimidine C5-H5. The
saved coordinates were used to generate the
36 · 36 reorientational covariance matrix M,
which has elements (Prompers and Brüschweiler,
2001):

Mij ¼
X2

M¼�2
jDY2MðXiÞ >< DY2MðXjÞj ð1Þ

where DY2M = Y2MðXÞ � Y2MðXÞ, Y2M are the
normalized spherical harmonics of rank 2, and the
bar indicates ensemble averaging over the coordi-
nates from the simulation. One important prop-
erty of the matrix M in this representation is that
its diagonal elements are proportional to the gen-
eralized order parameter S2 of Lipari and Szabo
(Prompers and Brüschweiler, 2001; Brüschweiler
and Wright, 1994):

1� S2
i ¼

4p
5

X2

M¼�2
r2
Y2M;i
¼ 4p

5
Mii ð2Þ

where r2 is the variance of spherical harmonic
Y2M.

iRED analysis

All calculations were performed using in house
programs written in perl or C and the details of our
protocol for applying iRED to RNA trajectories
have been published (Showalter and Hall, 2005).
Briefly, over the course of an MD trajectory the
principle axis directions Xj(t) = (hj(t),/j(t), j = 1,
. . ., n) of the spin interaction tensors for n sites are
stored and used to compute a covariance matrix of
theY2M(h,/).After isotropic averaging, an n· n real
symmetric matrix is produced with elements of the
form (Prompers and Brüschweiler, 2002):

Mij ¼ P2ðcosðXi � XjÞÞ ð3Þ

where P2ðxÞ ¼ ð3x2 � 1Þ=2 is the second Legendre
Polynomial, Wi ) Wj is the angle between spin
interactions i and j in a given snapshot, and the
bar indicates averaging over all snapshots of the
trajectory. For this work, the calculated covari-
ance matrix was 36 · 36 and included the same
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sites as described for RED analysis. The covari-
ance matrix can be diagonalized by solving the
eigenvalue problemM|m>¼ kmjm>(m = 1, ..., n;
n = 36 for the IRE system). The resulting nor-
malized reorientational eigenvectors |m> contain
information about which spin interactions reorient
in concert under the influence of each motional
mode, and the eigenvalues km represent the
amplitude of the observed motion.While the ei-
genvectors of M contain detailed information
about the dynamic correlations between sites, they
contain no information about the timescale on
which the observed motion occurs. This informa-
tion can be extracted by constructing correlation
functions describing the decay of motion along
each eigenvector over the course of the trajectory:

CmðtÞ ¼
X2

l¼�2
< am;l

�ðsþ tÞam;lðsÞ >s ð4Þ

where averaging is done over the snapshots of the
simulation and the am,l(t) are constructed from the
instantaneous projection of the eigenvectors onto
the snapshots (Prompers and Brüschweiler, 2002).
Assuming that these correlation functions decay
mono-exponentially, a lifetime sm associated each
motional mode can be established (Lipari and
Szabo, 1982a,b).

Eigenvector collectivity

The collectivity of an eigenvector is defined by the
parameter j, which is roughly proportional to the
percent of sites significantly reoriented by the motion
represented by that vector (Brüschweiler, 1995):

jm ¼
1

N
exp �

XN

n¼1

��jm >n

��2 log
��jm >n

��2
( )

ð5Þ

where |m>n is the nth component of eigenvector
|m> and N is the number of spin interactions. j m

ranges from 1/N to 1.

Results and discussion

IRE dynamics from NMR relaxation

13C NMR relaxation experiments to investigate
IRE base dynamics were previously described
(Hall and Tang, 1998). In those experiments,

relaxation parameters were obtained from data
collected at 20 �C, where the structure was solved,
and at 37 �C (where the structure could not be
solved, due to weak or nonexistent NOEs).
Analysis was complicated by having few NMR
relaxation-active probes, since only the 13C-purine
bases were used in those experiments.

Subsequent experiments to probe ribose
dynamics have now been done, using cytidine,
adenine and guanine specifically labeled at 13C10 .
Because spectral overlap in both the carbon and
proton dimensions was severe, separate RNA
samples had to be synthesized that contained only
one labeled nucleotide species. The 1H10 reso-
nances were assigned from our previous NMR
structure determination (Laing and Hall, 1996).
Each sample was used in standard T1, T1q, and
heteronuclear NOE relaxation experiments, as
described (Hall and Tang, 1998). These data were
then combined with the previous IRE relaxation
data for purine bases, and all data were processed
together to select an overall correlation time (sc);
the recalculated values are sc=3.6 ns at 20 �C, and
sc=2.8 ns at 37 �C (the previous study produced
scð20 CÞ ¼ 3:65 ns and scð37 CÞ ¼ 2:45 ns). Providing
more input data from the riboses (presumably less
flexible than the bases) for the calculation of the
global tumbling time prior to selection of the
appropriate model of motion for each site should
improve the accuracy of the results.

Estimating the sc of the IRE using data from
the purine bases alone was likely to be biased by
any unusual motions of those bases in the loop. By
using the riboses and bases in the stems for fitting
of the overall correlation time, the input data
should be more reflective of a stable core structure,
analogous to the backbone amides of a protein
core. In fact, the effect was to more precisely define
sc from fitting with the 13C10 ribose sites from the
stem. Unfortunately, inclusion of the ribose data
resulted in an increase in the selected order
parameters of all bases compared to our previous
analysis (Hall and Tang, 1998), suggesting that
although sc may be better determined, the
dynamics of many of the purine bases are not well
described by the formalism. The order parameters
selected for each 13C labeled position are shown in
Figure 2b for the bases and Figure 2a for the
riboses, at 20 and 37 �C. In general, the results
show: (1) lower order parameters for the riboses
than for their bases; (2) uniform (high) order
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parameters for the bases in the stem; (3) lower
order parameters for the bases A7, G8, and G10 in
the loop, a trend that is more pronounced at high
temperature; and (4) ribose order parameters ap-
pear independent of those of their base, the most
striking example of which is the G8 nucleotide,
where at 20 �C, the G8 13C8 has an order param-
eter of 0.85, but its 13C10 has S

2=0.6.
The values of the order parameters for each

spin pair should reflect the amplitude of motion.
Completely unrestricted motion of the internuclear
vector would have S2=0.0, while a vector held
rigid in the molecular frame would have S2=1.0.
Since the base 13C–1H spin pairs used in the NMR
experiments are fixed by sp2 geometry in the plane
of the aromatic purine base, the motion reported is
that of the base itself. Assuming that the A-form
RNA duplex structure does not tolerate sugar
repuckering and that the bases are tightly con-
strained, both riboses and bases from the stem
should have high order parameters. Since the loop
is floppy, and several of its sugars undergo
repuckering, the order parameters of its bases and

riboses should be measurably lower than those of
the stem. The recalculated order parameters (S2)
for purines are often unreasonably high, but there
is clearly a difference between the bases in the stem
and those in the loop (noting that G10 has higher
order parameters at 20 �C, consistent with its base
pairing to C6). Although several ribose 13C10

positions are not adequately fit by any model, as
indicated by the value of S2=1.0 (an allowed, but
physically unrealistic value), there does appear to
be a recognizable difference in the order parame-
ters for those riboses in the loop and stem.

In addition to motions of the nucleotides on the
ps-ns timescale reported by the Lipari–Szabo or-
der parameters, some nucleotides also undergo
motions on longer timescales. As noted previously
(Hall and Tang, 1998), the three terminal base
pairs of the stem fray, leading to the observation
of two and sometimes three resonances for a single
nucleus (slow exchange regime). The upper limit of
the exchange, which results from local duplex
melting, can be simply estimated from the chemi-
cal shift difference (Dd) between the resonances.
The two 13C2 and 13C10 resonances from A2 and
the two 13C10 resonances from G1 have an upper
limit of exchange of 24±1 ms. Adenosine 3 also
shows two resonances of its 13C2 peak, but that
exchange is slower (72 ms), probably because
melting of the duplex at this position occurs more
seldom. This slow conformational exchange will
not be reported by the order parameters derived
from NMR relaxation experiments, since the latter
are dominated by much faster motions occurring
on the ps-ns timescale. Only single resonances were
observed from bases and riboses in the loop. The
one exception is the ribose of G8, which has two
13C10 resonances at 37 �C; based on the chemical
shift difference between the resonances, the con-
formational exchange time is 23 ms. To further
explore the timescales of motion, relaxation dis-
persion experiments (on-resonance R1q experi-
ments, where the spin lock power was varied) were
done at 20, 30, and 37 �C at 500 and 600 MHz for
the purine bases and the 13C10-labeled riboses (data
not shown). No resonance showed a significant
power dependence of R1q, indicating no exchange
on the ms timescale.

While these trends observed for dynamics of
nucleotides in the IRE are plausible, there is a
potential problem with the extraction of order
parameters from these data. The Lipari–Szabo

Figure 2. 13C NMR order parameters for the IRE at 20 and
37 �C. (a) S2 for guanosine, adenosine, and cytosine ribose C10 .
(b) S2 for purine bases, guanine C8 and adenine C2, C8. Errors
were calculated from Monte Carlo simulation.
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formalism requires that the internal motion of the
13C-1H vector be separable from overall tumbling
(Lipari and Szabo, 1982a, b). Both of the bases in
the IRE loop which have been studied by fluo-
rescence spectroscopy have demonstrated motions
on the ns timescale, comparable to the global
tumbling time of the RNA (Hall and Williams,
2004). This suggests a high probability of a
breakdown in the separability of global and
internal motion, which would render the NMR
derived order parameters inaccurate.

RED analysis – order parameters

The experimentally determined order parameters
provide minimal data about some regions of the
IRE, specifically the 3¢ stem, owing to the lack of a
13C10 Uridine labeled sample, and a complete lack
of isolated spin pairs in the pyrimidine bases. To
compensate for the incomplete description of IRE
dynamics offered by the NMR experiments, a
12 ns molecular dynamics simulation of the mol-
ecule was run and analyzed using the RED for-
malism. Snapshots collected every 2 ps over the
final 10 ns of the trajectory were superposed and
used to construct the RED covariance matrix
(methods, Equation 1), for a total of 36 spin pairs:
the 16 backbone C10–H10 , 8 purine C8–H8, 4 Ade-
nine C2–H2, and 8 pyrimidine C5–H5. Order
parameters for each of these sites were computed
using Equation 2 and are shown in Figure 3.

Figure 3a shows the computed ribose C10 order
parameters. The trends suggest that the general
features of the IRE have been preserved by the
simulation, notably slight end fraying (more
dominant at the 3¢ end), lower order parameters in
the loop, and a stabilization of C6 and G10 by
their base pairing interaction. The average order
parameter of 0.86±0.06 for the ten stem riboses,
inclusive of the fraying terminal base pair, is con-
sistent with a relatively rigid A-form structure.

Figure 3b shows the computed order parame-
ters for each of the bases. Notably, the order
parameters of 0.86 for C6 and 0.89 for G10 fall
within the expected range for a stable, well or-
dered, base pairing interaction (compare to
S2=0.88±0.02 for the bases in the stem). Al-
though the order parameters for A7 are lower than
those of bases in base pairing interactions, they are
much higher than those for G8, U9, and C11,
consistent with preservation of the stacking inter-

action between C6 and A7. The notably lower
order parameters for G8, U9, and C11, along with
their reduced ribose order parameters, demon-
strate that they truly are more mobile than the rest
of the molecule and highlight the flexible nature of
the loop structure.

iRED analysis

Analysis of experimental relaxation data predicts
a global tumbling time (sc) on the order of
2.8–3.7 ns depending on temperature. Fluores-
cence anisotropy measurements of 2-aminopurine
substituted IRE suggest internal (local) dynamic
motions on the nanosecond timescale as well (Hall
and Williams, 2004). When the timescale of local
motions matches that of global tumbling, the
Lipari–Szabo formalism is only conditionally valid
and interpretation of order parameters may lead to
significant errors if the separability assumption
cannot be independently justified (Lipari and
Szabo, 1982a,b). The isotropic Reorientational
Eigenmode Dynamics (iRED) formalism (Prom-
pers and Brüschweiler, 2002) was applied to the
last 10 ns of the IRE trajectory in order to test the
validity of the separability assumption. Even

Figure 3. The square of the generalized order parameter, S2,
calculated from the diagonal elements of the non-diagonalized
RED matrix M (methods, Equation 2). (a) Ribose C10 (b) r

Purine C8, n adenine C2, m pyrimidine C5.
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though the decay times of the five largest amplitude
modes are expected to be shorter than the experi-
mental global tumbling time, the eigenvalues of
these global tumbling modes should be distinct from
those of internal modes if separability is satisfied. In
addition, this formalism provides detailed physical
information about the motions experienced by each
RNA site, and demonstrates the extent of any
dynamic correlation between these sites.

The real symmetric iRED covariance matrix M
(methods, Equation 3) was constructed for the 36
spin interactions of interest using snapshots col-
lected every 2 ps over the final 10 ns of the tra-
jectory. The matrix was diagonalized, yielding 36
normalized reorientational eigenvectors |m> (re-
ferred to here as e1, e2, etc. for simplicity), con-
taining information about which spin interactions
reorient in concert under the influence of each
motional mode, and the eigenvalues km, which
represent the amplitude of the observed motion
(see Table 1 for a key relating position in the
eigenvectors to spin interactions in the RNA).

Testing the separability assumption
The eigenvalue (km) associated with each eigen-
vector |m>of the iRED covariance matrixM is the
variance of the amplitude of motion along the
reorientational mode (Prompers and Brüschweiler,

2002). The collectivity (jm, Equation 5) of a given
eigenvector reflects the percent of spin interactions
significantly reorienting under the influence of the
mode represented by the eigenvector (Brüschweiler,
1995), and so indicates the degree of correlation
between all sites in the molecule imposed by the
eigenmode. For an internally rigid molecule, the
matrix M will have at most five non-zero eigen-
values (when the rank 2 spherical harmonics are
used to construct M) and the collectivities of their
associated eigenvectors should be very high (jm >
0.50). Additional non-zero eigenvalues reflect
internal motion of the system; separability is
characterized by a large gap in both eigenvalue and
collectivity between the five largest amplitude
(global) modes and the n – 5 internal modes.

A plot of jm vs. km (Figure 4) calculated from
the IRE trajectory shows a continuous distribution
with no apparent gap separating internal and
global modes in either the collectivity or amplitude
dimension. Given that the trajectory was calcu-
lated to four times the experimental global
tumbling time, this suggests the separability
assumption is invalid for the IRE construct and
brings the absolute value of the experimentally
determined order parameters into question. Order
parameters could be calculated from iRED, but
when separability is shown to be unsatisfied, it is

Table 1. iRED eigenvector spin interaction key

Spin interaction Nucleotide Heavy atom Spin interaction Nucleotide Heavy atom

1 G1 C1¢ 19 G8 C1¢
2 G1 C8 20 G8 C8

3 A2 C1¢ 21 U9 C1¢
4 A2 C8 22 U9 C5

5 A2 C2 23 G10 C1¢
6 A3 C1¢ 24 G10 C8

7 A3 C8 25 C11 C1¢
8 A3 C2 26 C11 C5

9 G4 C1¢ 27 U12 C1¢
10 G4 C8 28 U12 C5

11 A5 C1¢ 29 C13 C1¢
12 A5 C8 30 C13 C5

13 A5 C2 31 U14 C1¢
14 C6 C1¢ 32 U14 C5

15 C6 C5 33 U15 C1¢
16 A7 C1¢ 34 U15 C5

17 A7 C8 35 C16 C1¢
18 A7 C2 36 C16 C5
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unclear which eigenvectors to include in the cal-
culation (Prompers and Brüschweiler, 2002). Al-
though separability is also strictly necessary for
RED calculations, those calculations more closely
resemble the experimentally derived values in their
assumptions, thus they were used for comparison.

Correlation times of the eigenmodes
While the eigenmodes of the iRED covariance
matrix provide information on the amplitude of
motions experienced by each investigated site in
the IRE, all time information is lost during the
construction of the matrix, leaving the timescale of
the motions sampled undetermined. Correlation
functions describing the loss of memory along
each eigenmode were calculated using equation 4
in order to reconstruct the timescale information
contained within the trajectory. Assuming that
these correlation functions decay mono-exponen-
tially, correlation times can be extracted that rep-
resent the timescale of motion along each mode.
Of the 36 correlation functions calculated, 32 de-
cayed to zero mono-exponentially; e1, e4, e5 and
e6 have correlation functions that do not reach a
stable plateau or that have a plateau at a value well
above zero. These four correlation functions can
be found in the supplementary material.

In theory, the five eigenvectors with the largest
eigenvalues should have sm on the order of 2–3 ns,
approximately equal to the global tumbling time
from Lipari–Szabo analysis. In practice, the
longest lifetimes sampled in the MD trajectory fell
well short of the experimental tumbling time

(Figure 5), with the largest calculated sm=790 ps.
Interestingly, 13 eigenmodes, 36% of the total,
have lifetimes within an order of magnitude of the
experimentally determined global tumbling time.
Although the longest tumbling times must be
underestimated by the simulation, as the five lon-
gest should correspond to the experimental value,
this result is consistent with the time resolved flu-
orescence data which demonstrates that a signifi-
cant portion of the internal motion occurs on the
same timescale as global tumbling (Hall and
Williams, 2004).

Correlated motion
The eigenvectors of the iRED matrixM predict the
pattern and extent of the correlation networks that
couple the various sites in the IRE. Of course, ei-
genvectors could also be calculated from RED
analysis, but iRED is preferred here because, given
the intermingling between global and internal
dynamics in the IRE, the superposition procedure
required for RED would remove some potentially
important information. Among the thirty six ei-
genvectors, two (e1, e2) contain large amplitude
contributions from all sites in the RNA; e3 and e4
contain large amplitude contributions from the
loop plus the 5¢ or 3¢ stem, respectively. Smaller
amplitude contributions come from all sites in e5 as
well, consistent with the expectation that the five
eigenvectors with the largest eigenvalues will rep-
resent global motion. Of the remaining eigenvec-
tors, many are no less ‘‘global’’ in their distribution

Figure 4. The distribution of the collectivity parameter j vs.
eigenvalue km from iRED analysis. The absence of a gap
separating the five points with largest km from the rest of the
distribution suggests that global and internal motion are not
separable for the IRE.

Figure 5. Characteristic lifetime in picoseconds (sm) associated
with each eigenvector |m> of the matrix M generated from
iRED analysis of the IRE simulation. sm is the lifetime associated
with the reorientational mode represented by |m> and therefore
is not a direct estimate of se from Lipari–Szabo analysis.
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of affected sites: e7, e19 and e25 contain contribu-
tions sampling all regions of the RNA; e8 contains
contributions from most ribose sites; and a total of
nineteen eigenvectors contain contributions from
most or all of the sites in the loop, with some cor-
relation to one or both stems in seven of these
nineteen. The remaining eigenvectors contain
contributions from the 5¢ stem, 3¢ stem, or both and
are generally amongst the lowest in eigenvalue.
Several eigenvectors are especially noteworthy for
what they reveal about the motions in the IRE.

The bases G8, U9, and C11 exhibited low order
parameters in RED analysis of the trajectory; G8
was shown by NMR and fluorescence experiments
to have considerable motion. These three bases
might be expected to undergo local motion, which
would result in a set of three iRED eigenvectors,
each dominated by amplitude from one of these
bases individually. Indeed, e9, e10, and e12 cor-
respond to such eigenvectors; there is little signif-
icant correlation to other sites in the molecule
(Figure 6a,b,c). However, their motions are not
exclusively local: e6 shows strong correlation be-
tween these bases and other loop sites, as well as
the loop-closing base pair (Figure 6d). Eigenvector
6 also has the distinction of having the longest
correlation time (sm=790 ps) calculated from its
correlation function. More generally, the extensive
motions of G8, U9 and C11 are reflected in the
number of eigenvectors of the iRED matrix that
contain projections onto these sites.

Guanosine 8
An example of the utility of iRED is seen in the
description of Guanosine 8, one of the mobile
nucleotides in the IRE loop. Experimentally
determined NMR order parameters for this base
and its ribose are significantly lower than the
flanking A7 nucleotide. The NMR relaxation data
are in agreement with time-resolved fluorescence
data that show that this base (2-aminopurine
substituted for G8) experiences dynamic motion
on a ns timescale (Hall and Williams, 2004). What
the iRED analysis shows is that the motions that
contribute to the experimentally measured
dynamics come from several highly correlated
modes, not simply from independent motion of the
base and/or ribose. In fact, amplitude from the G8
base is found not only in e10, where it is uniquely
present, but also in e1 and e4 (global eigenvectors),
e6, e11, e13, and e14. Amplitude from the G8

ribose appears in e18, which it shares only with U9
C10 , and also in e1 and e2 (global) and e7, e11, e15,
and e20. Curiously, it does not appear in e8, which
has contributions from most of the riboses in the
IRE molecule. The correlated motions revealed by
the iRED analysis will be inextricably part of the
order parameter calculated from NMR relaxation
data, rendering that value a complicated function
of global, local, and correlated motions.

Uridine 9 and Cytosine 11
There are no NMR relaxation data for the pyr-
imidines in the IRE, but the simulations describe
their motions. Given the good agreement between

Figure 6. Reorientational eigenvectors from iRED analysis of
the IRE trajectory shown as the principal order parameter
components dS2

j ¼ �mjjm>j|
2 for each spin pair. (a) e9 displays

predominantly independent C11 base motion, (b) e10 displays
predominantly independent G8 base motion, and (c) e12
displays predominantly independent U9 base motion. (d) e6
shows correlations spanning the loop and including the bases of
G8, U9, and C11, even though these bases are unrestrained in
the NMR structure. (d) Ribose positions; (n) Base positions;
the full key relating interaction number to site in the IRE can be
found in Table 1.

190



in vitro and in silico descriptions of the purine
nucleotides, the RED and iRED data should
provide a reasonable picture of the properties of
the pyrimidines. The two pyrimidine nucleotides in
the loop, U9 and C11, have low order parameters
for both base (0.4 and 0.22, respectively) and ri-
bose (0.65 and 0.5, respectively) from RED anal-
ysis. NMR relaxation data also produce a low
order parameter of C11 C10 , especially at 37 �C.
NMR structural data were unable to provide
constraints for these base positions in the loop.
The iRED calculation shows the extent to which
motions of U9 and C11 nucleotides are correlated
to other positions in the IRE. iRED data show
that the U9 base appears in e1 (global), predomi-
nates in e6, and is alone in e12, making it relatively
isolated. In contrast, its ribose has amplitude in e1,
e2, e4, and e5 (all global motions), as well as e8,
e11 (predominant contributions from A5 and C11
bases, followed by the amplitude of the U9 C10 ,
with smaller amplitude from A7 and G8 bases, and
G8 ribose), e14 (where U9 C10 is correlated only
with C11 C10 ), e15 (riboses of A7, G8, and U9, and
the A7 base), and e16 (riboses of G8 and U9). This
picture of the ribose shows its strong connection to
other sugars in the loop, with some base motions
also contributing.

The C11 base, extruded from the loop, has
amplitude in e1 (global), e6, is alone in e9, and has
the major contribution to e11. Its ribose appears
in e1, e2, and e4 (global eigenvectors), as well as in
e6, e7, e8, e13, e25 (the dominant amplitude). In
general, these data show that loop nucleotides
appear to be moving in concert, in addition to
their idiosyncratic dynamics. There is a strong
connection among the riboses throughout the
loop, independent of their base motions. The
consequence of these correlations is that any single
site order parameter determined by NMR experi-
ments (and RED analysis) will be influenced by
dynamics of many other sites in the RNA.

The C6:G10 pair
Two bases in the loop, C6 and G10, are shown to
be hydrogen bonded in the NMR structure. If this
pairing is stable on the timescale of the simulation,
then little motion should be observed for these two
bases. Indeed, this is indicated by iRED analysis,
where e23 and e28 (Figure 7a,b) are the eigenvec-
tors with the largest eigenvalues displaying signif-
icant motion from these two bases (excepting the

truly global modes, which show correlation from
all sites). These eigenvectors represent specific
correlated motion of these two bases and A7,
which stacks with C6. Again, however, their mo-
tion is not isolated from other sites in the IRE.

Noteworthy eigenvectors with correlated sites
Eigenvector 8 is unique in that its contributions
come predominantly from the ribose vectors
(Figure 7c). While riboses in a mostly rigid stem
might be expected to have some correlated motion,
the extension of these correlations through the
flexible loop is unexpected. The observation here is
that the correlation starts with three bases at the 5¢
end of the stem, then extends from the A5 ribose
through C6 (stacked on A5) and A7 (some stack-
ing on C6); breaks at G8, then continues with the
riboses of U9, C11, U12, C13, and U15.

The eight eigenvectors with the lowest eigen-
values contain amplitude from the stem regions of
the IRE, either the duplex or one strand. Motions
of the stem should indeed occur seldom on the
timescale of the simulation, for the A-form struc-

Figure 7. Reorientational eigenvectors from iRED analysis of
the IRE trajectory shown as the principal order parameter
components dS2

j ¼ �mjjm>j|
2 for each spin pair. (a) e23 and (b)

e28 display correlated motion spanning the C6:G10 basepair.
(c) e8 is dominated by ribose correlations along the majority of
the sugar-phosphate backbone. (d) Ribose positions; (n) Base
positions; the full key relating interaction number to site in the
IRE can be found in Table 1.
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ture is both rigid and stable. Motion of the 3¢
terminal ribose is indicated here by its slightly
lower order parameter, but fraying of the duplex
terminus is slow (ms timescale), and so that mo-
tion will not be sampled by the simulation.

Conclusions

One implication of the extensive correlated mo-
tions we observe in the IRE is the degree to which
base motion can affect an RNA structure. The
large scale motions of the bases in the IRE loop, as
they appear during the course of the simulation,
illustrate how the structure of the entire RNA is
altered in concert (see Figure 8). The large ampli-
tude of the modes dominated by the loop bases
suggest that the motion they represent may be
deforming the overall structure, a situation that
would couple internal motion and the global
tumbling of the IRE.

Standard practice for experimental analysis of
RNA secondary and tertiary structure is to mutate
a given site, then probe the RNA for structural

changes. If sites are coupled through their
dynamics, then a base mutation could propagate
not only a structural change throughout the mol-
ecule, but could alter its dynamic motions as well.
If dynamic motion is necessary to prepare a site for
interaction, then a change in the extent of flexibility
could alter the available contact surface and so
affect binding.

The iRED analysis has provided a graphic
confirmation of what our intuition predicted: that
there is no clean separation between global tum-
bling of the IRE RNA molecule and the local
motions of its nucleotides. In addition, iRED is
able to provide a detailed description of which
motions are correlated, and the extent to which
they contribute to the overall system description
(e.g. small eigenvalues, small contribution). These
features of the IRE are likely to be shared by other
RNA structures, such as the large hairpin loops in
snRNAs, small hairpin loops like the TAR loop,
GNRA loops, and tRNA anticodon loops.

This study is the first application of iRED
formalism to the description of motions in a small
and floppy RNA structure. It shows that global
and local motions cannot be rigorously separable;
thus order parameters calculated from NMR
relaxation experiments will be unreliable. While
RED analysis of the MD trajectory qualitatively
reproduces the experimental NMR order param-
eters, iRED analysis shows that the differences
may be due to inseparability of global and internal
motion. Both RED and iRED results show that
several modes contribute to the motion at each
site. We propose that iRED analysis of MD tra-
jectories provides an indispensable complement to
experimental descriptions of dynamic motions in
small floppy RNA molecules.

Supplementary material available

Plots of correlation functions for the eigenvectors
illustrated in Figures 6 and 7, as well as the
four that do not converge are available as elec-
tronic supplementary material at http://dx.doi.org/
10.1007/s10858-005-7948-2.
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